SUMMATION OF SERIES

You may use the following which are given in the formula book:

$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$
$$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$$

f(r)	а	b	$\sum_{r=a}^{b} f(r)$
3r	5	18	
4r + 2	1		1056
r-7	1	10	260
$2r^2 - 4r + 1$	1	8	
$3r^2 + 5r$	1	2 <i>n</i>	In factorised form
r^3-4r	1	4	
$r^{3} - 4r$	5	20	
$r^3 - 4r + \Box$	5	20	43280
r(r+1)(r+2)	1	n	In factorised form
	1	10	1140
$r^2 + r + r$	1	14	2996
	1	18	6228

SUMMATION OF SERIES

You may use the following which are given in the formula book:

$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$
$$\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$$

f(r)	а	b	$\sum_{r=a}^{b} f(r)$
3r	5	18	483
4r + 2	1	22	1056
6r - 7	1	10	260
$2r^2 - 4r + 1$	1	8	272
$3r^2 + 5r$	1	2 <i>n</i>	In factorised form $2n(2n+1)(2n+3)$
$r^3 - 4r$	1	4	60
$r^{3} - 4r$	5	20	43200
$r^3 - 4r + 5$	5	20	43280
r(r+1)(r+2)	1	n	In factorised form $\frac{n(n+1)(n+2)(n+3)}{4}$
	1	10	1140
$3r^2 + -1r + 4$	1	14	2996
	1	18	6228